

DPP No. 58

Total Marks : 34

Max. Time : 32 min.

🕀 www.studentbro.in

Topics : Function, Vector, Three Dimensional Geometry			
Type of Questions		M.M.	, Min.
Single choice Objective (no negative marking) Q.1 to 4	(3 marks, 3 min.)	[12,	12]
Multiple choice objective (no negative marking) Q.5, 6	(5 marks, 4 min.)	[10,	8]
Subjective Questions (no negative marking) Q.7	(4 marks, 5 min.)	[4,	5]
Match the Following (no negative marking) Q.8	(8 marks, 8 min.)	[8,	8]

- **1.** The greatest value of the function $f(x) = 2.3^{3x} 3^{2x}$. 4 + 2.3^x in the interval [-1, 1] is
 - (A) 0 (B) 8/27 (C) 1 (D) 24

2. Let \vec{a} , \vec{b} , \vec{c} be three non-coplanar vectors such that volume of the parallelopiped formed by these vectors is 1/4. Now, if any vector \vec{d} is represented as, $\vec{d} = \lambda (\vec{a} \times \vec{b}) + \mu (\vec{b} \times \vec{c}) + \nu (\vec{c} \times \vec{a})$. Then $\lambda + \mu + \nu$ equals:

(A) $\vec{d} \cdot (\vec{a} + \vec{b} + \vec{c})$ (B) $\frac{2\vec{d}}{3} \cdot (\vec{a} + \vec{b} + \vec{c})$ (C) $8\vec{d} \cdot (\vec{a} + \vec{b} + \vec{c})$ (D) $4\vec{d} \cdot (\vec{a} + \vec{b} + \vec{c})$

3. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are non - zero, non collinear vectors and if $((\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})) \cdot (\vec{a} \times \vec{d}) = 0$, then which of the following is always true

(A) \vec{a} , \vec{b} , \vec{c} , \vec{d} are necessarily coplanar (B) either \vec{a} or \vec{d} must lie in the plane of \vec{b} and \vec{c}

(C) either \vec{b} or \vec{c} must lie in plane of \vec{a} and \vec{d} (D) either \vec{a} or \vec{b} must lie in plane of \vec{c} and \vec{d}

- 4. Let $\vec{r} = (\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + 2 (\vec{c} \times \vec{a})$ where $\vec{a} \cdot \vec{b} \cdot \vec{c}$ are three noncoplanar vectors. If \vec{r} is perpendicular to $\vec{a} + \vec{b} + \vec{c}$, then minimum value of $x^2 + y^2$ is
 - (A) π^2 (B) $\frac{\pi^2}{4}$ (C) $\frac{5\pi^2}{4}$ (D) none of these
- 5. If $\vec{a}, \vec{b}, \vec{c}$ are non-zero non-coplanar vectors, then $\vec{r}_1 = 2\vec{a} 3\vec{b} + \vec{c}$, $\vec{r}_2 = 3\vec{a} 5\vec{b} + 2\vec{c}$, $\vec{r}_3 = 4\vec{a} 5\vec{b} + \vec{c}$ are (A) linearly independent
 (B) linearly dependent
 (C) $\vec{r}_3 = \alpha \vec{r}_1 - \beta \vec{r}_2$; $\alpha, \beta \in \mathbb{R}$ (D) None of these

CLICK HERE

6. Projection of line $\frac{x+1}{2} = \frac{y+1}{-1} = \frac{z+3}{4}$ on the plane x + 2y + z = 6; has equation

(A)
$$x + 2y + z - 6 = 0 = 9x - 2y - 5z - 8$$
 (B) $x + 2y + z + 6 = 0$, $9x - 2y + 5z = 4$

(C)
$$\frac{x-1}{4} = \frac{y-3}{-7} = \frac{z+1}{10}$$
 (D) $\frac{x+3}{4} = \frac{y-2}{7} = \frac{z-7}{-10}$

7. Find the equation of the plane passing through the point (1, 1, -1) and perpendicular to the planes x + 2y + 3z - 7 = 0 and 2x - 3y + 4z = 0.

8. Match the column

Column - I Column - I

(A) If
$$\vec{a}, \vec{b}, \vec{c}$$
 are non coplanar unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{b + \vec{c}}{\sqrt{2}}$, (p) $\frac{\pi}{3}$

then the angle between \vec{a} and \vec{b} is

(B) Four vectors
$$\vec{a}, \vec{b}, \vec{c}, \vec{d}$$
 such that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{O}$. Let P_1 and P_2 be (q) $\frac{3\pi}{4}$

planes determined by the pairs of vectors \vec{a},\vec{b} and \vec{c},\vec{d} respectively,

then the angle between P_1 and P_2 is

(C) If
$$\vec{a}$$
 and \vec{b} are two unit vectors such that $\vec{a} + 2\vec{b}$ and $5\vec{a} - 4\vec{b}$ are (r) $\frac{\pi}{6}$

perpendicular to each other then the angle between $\,\vec{a}$ and $\vec{b}\,$ is

(D) If
$$|\vec{a}| = 3$$
, $|\vec{b}| = 5$, $|\vec{c}| = 7$ and $\vec{a} + \vec{b} + \vec{c} = \vec{O}$. The angle between \vec{a} and \vec{b} is (s) 0

Answers Key

- 1. D 2. D 3. C 4. C
- **5.** BC **6.** AC **7.** 17x + 2y 7z = 26.

8. (A) \rightarrow q; (B) \rightarrow s; (C) \rightarrow p; (D) \rightarrow p

Get More Learning Materials Here :

